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 Lattice Function Measurement with TBT BPM Data 

Ming-Jen Yang 
Fermi National Accelerator Laboratory 

Abstract 

At Fermilab Main Ring some of the Beam Position Monitors (BPM) are instrumented 
with Turn–By-Turn (TBT)  capability to record up to 1024 consecutive turns of BPM 
data for each given trigger.   For example, there are 9 horizontal plane and 8 vertical 
plane BPM's in the sector D3 & D4.  The BPM data, which records the betatron oscil-
lation, is fitted to obtain beam parameters x, x', y, y', and Δp/p, using the calculated 
beam line transfer matrix.  The resulted TBT beam parameters (x, x') or (y, y') are fit-
ted to ellipses to obtain the lattice function β, α, and the emittance associated with the 
betatron oscillation.  The tune of the machine can be calculated from the phase space 
angles of the successive turns, in the normalized phase space.  The beam parameters 
can also be used to extract transfer matrix to be used for local and global coupling 
analysis.  The process of fitting the BPM data produces information that can be used 
to diagnose problems such as calibration, noise level and polarity.  Being available at 
every turn and at changing beam position the information carries a lot of statistical 
power.  Since most of the BPM's are located at high beta location only the x and y 
beam position information is not simultaneously available.  The BPM data fitting 
processing essentially bridged the gap.   
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1. Introduction 
Single BPM Turn-by-Turn beam position data in a circular machine is 

usually used to do tune measurement with the FFT analysis.  With multiple BPM 
turn-by-turn data there are more possibilities.   

 
Figure 1, The Layout of BPM's in the D3 & D4 section of the D-sector of 
Fermilab Main Ring.  The horizontal BPM's are listed on the top side of the 
figure and the vertical BPM's  on the bottom side.  The EØ location has no 
BPM instrumentation but is where the fitting for x  and x' is referenced to. 

At Fermilab one way of measuring lattice function has been developed 
using TBT betatron oscillation data.  Figure 1 shows all the BPM's in the Fermilab 
Main Ring sector D3 & D4, in either plane.  Using the known transfer matrix 
from one BPM to another the position data can be fitted to get beam parameters x 
and x' for a given reference location for every turn of the beam.  In this example 
the reference location was chosen to be at the EØ straight which is down stream 
of M:HPD49.  In Figure 2 shows a single turn BPM data in open circles.  The ex-
pected BPM position after the fit is shown in solid dots. 

 
Figure 2. The horizontal BPM position is plotted for each BPM in the beam 
line.  The open circles are the actual BPM data and the solid dots are the 
calculated beam positions  based on the fitted x and x' at EØ. 
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The resulting EØ location beam phase space parameters x and x' are plot-
ted in Figure 3, which includes a total of 200 consecutive turns.  These points, 
which follow elliptical path as dictated by the tune and the lattice function of the 
machine, are fitted to an ellipse to extract β and α function.  With the fitted lattice 
function the tune of the machine can be calculated using the normalize phase 
space angle, in a turn-by-turn fashion.   

 
Figure 3. The phase space plot of fitted beam parameters (x, x') at EØ.  Each 
point represents one turn of the proton beam.  There are a total of 200 
consecutive turns on the plot. 

In this write-up the whole mechanism of the TBT analysis will be pre-
sented fully.  Also included are the mathematics, the TBT system hardware and 
software, the analysis of a set of actual TBT data, and the analysis of simulated 
TBT data as well. 
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2. Basics and formula of TBT analysis 

2.1 WHAT'S DIFFERENT ABOUT THE TBT METHOD 
The beta function can be measured by using either dipole or quadrupole 

correctors.  Since the number of independently adjustable quadrupoles are very 
limited at Fermilab Main Ring the one-bump dipole method is by far the most 
used.  This method uses closed orbit changes as a function of calibrated kicks 
from dipole corrector [1] to calculate the beta function.  The TBT method uses the 
betatron oscillation data to extract lattice function.   

The one-bump method needs the phase advances between BPM's or 
around the ring called the tune.  The TBT method needs the  beam line transfer 
matrix in between the BPM's.  These information about the machine are basically 
equivalent but in a different form.  In other word both have to start with a model 
of some kind. 

There are some important differences between the two methods.  First, the 
one-bump method needs phase advance covering all devices in the ring while 
the TBT method needs transfer matrix only between the BPM's.  In other words, 
one needs a global information while the other only needs local information.  
Second, The TBT method has some self diagnosing information while the one-
bump method does not.  A wrong transfer matrix used in the TBT method will 
result in a poor fit.  Third, the one-bump method needs the calibrations of the 
corrector dipole strength while  the TBT method does not care how the betatron 
oscillation is excited. 

2.2 MACHINE CRITERIA FOR TBT DATA  
Since the betatron oscillation is the soul of TBT lattice function measure-

ment it is very important to keep its amplitude steady.  The effects which de-
grade TBT data quality should be avoided. 

2.2.1 Chromoticity 

The observed betatron amplitude changes its amplitude through process 
of decoherence, which depends on both Δp/p and chromoticity ξ .  The Δp/p is 
usually not some thing that gets changed easily.  The chromoticity on the other 
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hand is usually kept at non-zero value due to instability.  However, it can be set 
to nearly zero for a shot time or with smaller intensity beam during study.  It is 
important that changing ξ does not significantly change the machine.  
Monitoring the tune of the machine will give indication of possible sextupole 
feed-down effect. 

2.2.2 Coupling 
Another way the betatron oscillation can change its amplitude very 

quickly is through X-Y coupling.  In this case the betatron amplitude is modu-
lated by the beat frequency caused by the oscillation in the two planes.  It is es-
sential that the machine be sufficiently de-coupled by either the use of correc-
tional skew quadrupole or by pulling the tunes of the two planes apart.  Having 
a zero chromoticity in both planes can make things more complicated if coupling 
is not reduced sufficiently. 

2.2.3 Betatron oscillation amplitude 
The amplitude of the betatron oscillation should be large enough that the 

noise level does not cause significant error. 

2.2.4 Beam loss 
When the betatron oscillation amplitude becomes too large some portion 

of the beam may be outside of the dynamic aperture and be loss.  If sufficient 
amount of beam is lost in a short time the beam position may not be reliable. 

2.3 FITTING FOR PHASE SPACE PARAMETERS 
In the horizontal plane the BPM data of each single turn is fitted for the 

beam parameter x, x', and Δp/p at a reference beam line location.  The vertical 
plane TBT data is fitted only for y and y'.  The beam line transfer matrix between 
this reference zero-th location and the i-th BPM locations is shown in the follow-
ing equation: 
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δ ( = Δp/p) is the percentage deviation of the average beam momentum from the 
reference momentum as determined by the bending field.  The inclusion of δ in 
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the calculation is necessary to remove the effect of momentum error.  The 
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and δ of the column vector on the right hand side are the beam parameters being 
fitted to the reference o-th location.  This fit is done by minimizing the summed 
quantity below: 
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The summing index "i" is for all the BPM's being used for the calculation.  " pi " is 
the i-th BPM reading.  Taking the partial derivatives of S with respect to the 
beam parameters gives: 
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After completing all the summed terms one obtains: 
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The 3 × 3 matrix R depends only on the T matrix elements.  The U  column vector 
on the other hand depends also on the measured BPM position data.  From 
equation (3) the beam parameters is solved.  The result can then be propagated to 
other BPM location using equation (1).  This procedure is to be done for every 
single turn of the BPM data. 

2.4 ELLIPSE AND LATTICE FUNCTION 
A parameter representation of a phase space ellipse can be written as fol-

lows [2]: 
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The x
n
and x

n
' are the phase space coordinate at the n-th turn.  This expression is 

useful for plotting the ellipse with given ε, β, and ε.  The emittance ε here is sim-
ply the phase space area enclosed by the ellipse.   
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To fit for α, β, and ε with a given series of phase space points a different 
formula is used.  Start with the normalized phase space coordinate transforma-
tion: 
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The phase space point (X
n

, Y
n
) will follow a circular path.  Re-scale this coordi-
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where 
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#
 .  The trajectory in the (U ,V ) phase space is still expected 

to be circular.  Using equation (6) as transformation to the (U , V ) phase space 
points and fit for the best circular path by minimizing the equation of deviation 
from circular trajectory 
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The summation over n is for the number of turns used in the phase space ellipse.  
With a little massage and substitution of 
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Taking the partial derivatives w.r.t. S  gives the three simultaneous equations for 
solving A, B, C:  
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Once the equations are solved the value for α, β, and ε can be calculated with the 
formula of substitution defined.  The ε value simply is the area enclosed by the 
ellipse which means 

! 

" = # $ R2 , in unit of π-mm-mr. 



   TM-1922 

 - 8 - 

2.5 TUNE 
With the normalized phase space transformation of equation (5) one can 

calculate the phase space angle  
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and the TBT tune is simply 
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n
 does not change sign.  

Because of data precision the TBT tune will not be noise free.  A more precise 
number can be obtained by doing linear fit to 

! 

"
n
 against the turn number.  The 

slope from the fit gives the tune of the machine. 

2.6 COUPLING MEASUREMENT 

2.6.1 Global coupling 
The equation for global coupling is expressed as 
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The superscript of the column vector is used to indicate the turn number.  Since 
the column vectors are calculated independently for each turn the whole ring 
transfer matrix elements can be fitted by minimizing the expression in equation 
(12). 
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The row index j is used because the matrix elements are fitted row by row.  The 

! 

u j  are defined as the j-th row of the column vector. 

2.6.2 Local coupling 
The equation for local coupling is expressed as 
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The subscript "+" or "–" are used to indicate if the beam vector is calculated using 
the down-stream or up-stream TBT BPM data.  The superscript again indicates 
the n-th turn data.  The formula for fitting local coupling transfer matrix is 
slightly different from that of the global coupling and is shown in equation (14). 
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To do the local coupling calculation properly it is of course important to have 
sufficient number of BPM detectors on either side of the location where analysis 
is to be done. 
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3. TBT system 

3.1 HARDWARE 
At Fermilab both Tevatron and Main Ring use the same BPM hardware.  

There are 24 multi-bus based BPM houses around the ring [3].  Each house han-
dles up to 6 horizontal and 6 vertical BPM's.  The TBT hardware is simply a 
multi-bus TBT memory card with a data storage space of 1024 × 14 bytes.  This 
space is for 12 one-byte BPM data and a two-byte TBT time stamp for 1024 turns.  
Two timing signals are use to prepare for and to trigger the TBT data collection.  
All micro-processors are already programmed to handle the TBT data. 

Currently A1 & A2 and D3 & D4 houses in the Main Ring are instru-
mented with TBT hardware.  The TBT data from A1 & A2 location is useful for 
studying the Main Ring injection matching from 8 GeV line and the data from 
D3 & D4 houses for extraction matching to Tevatron.  In Tevatron the E1 & E2 
BPM houses are instrumented with TBT hardware and can be used to study the 
beam injection from the Main Ring.  The Tevatron A4 & B1 houses are recently 
instrumented with the hope to study the beta function at the BØ collision point. 

3.2 DATA ACQUISITION 
Both the Main Ring and Tevatron BPM data request are serviced by the 

Tevatron front end.  The front end and the multi-bus processor communicates 
using the GAS protocol via CAMAC data way.  In the past the demand for TBT 
data has always been one horizontal and one vertical only, as was requested by 
the application program.  With the new demand there is now two BPM houses 
worth of data, approximately 24 Kilo-Bytes, to be read.   

3.4 SOFTWARE SUPPORT 
Console program M42 was originally written to do only the FFT analysis 

on the TBT data.  It is upgraded to do just about every thing being covered in this 
write-up and more.  There is help facility on the new M42 console program 
(W42) to give a description of the new functionality. 
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4. Analysis 

4.1 DATA PRE-PROCESSING 
Before analysis could begin the closed-orbit is subtracted from each BPM 

data.  For each BPM the closed-orbit is simply the average position over the 
number of turns sampled.  The BPM positions shown in figure 2 already had the 
closed orbit subtracted.  Otherwise the regular sine-wave like betatron oscillation 
would have been obscured by the irregular orbit offsets.  When significant syn-
chrotron oscillation is present at a period comparable to the duration of data 
sample more care must be taken to avoid introducing bias. 

4.2 FITTING FOR BEAM PARAMETERS 
The fitting procedure follows the formula as outlined in section 2.2.  With 

the fitted result the expected position at every BPM can be calculated and be 
compared with data.  It is important that the fit deviations at all the BPM's are 
checked to ensure the validity of result.  A statistical analysis usually can provide 
a quick glance at the deviation error and show if potential problem is present.  
This deviation can always be examined as is to see if any systematic error is hid-
den behind the statistics.  It is always a good idea to look at the deviation data it-
self to see if there exist systematic effects. 

4.2.1 Fit deviation statistics 

The deviation statistics is collected and examined in two ways.  The first, 
called "TBT RMS error," is to collect it across all the BPM's and compare it from 
one turn to another.  The other way, called "BPM error", is to collect the statistics 
on individual PBM over a range of turn number and compare that with other 
BPM.   

4.2.1.1 TBT RMS error 

After the fit the Root-Mean-Square deviation of equation (2) is evaluated 
for every turn.  The TBT RMS error is expected to be independent of the turn 
number and be consistent with the expected RMS due to BPM electronics noise 
and the digitization resolution.  By comparing it turn by turn problems with data 
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may be identified.  As an example, Figure 4 shows the TBT RMS as a function of 
turns.   

 
Figure 4. Turn-by-turn Root-Mean-Square deviation of BPM data from the 
fitted result. 

There could be various indication for error.  A sudden huge jump in RMS 
is likely caused by one of the two BPM houses skipping a couple of turns result-
ing in data from the two BPM houses not matching in time.  A RMS which tends 
to follow the betatron amplitude may be an indication that the transfer matrix 
used is incorrect. 

 
Figure 5. The BPM deviation statistics.  This is based on individual BPM can be 
collected for any number of turns.  Shown in this plot is data accumulated 
from about 200 turns. The open circle represent the average of deviations and 
error bar is the RMS of the deviation. 

4.2.1.2 BPM error 

The average and RMS deviation between data and the fit can be collected 
for individual BPM at any number of turns.  The result is shown in Figure 5, 
from the same data set.  The average of position deviation, shown in open circles, 
is expected to be nearly zero and would indicate problems if otherwise.  The 
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RMS, shown as the vertical error bars, is a useful indicator of individual BPM 
problems such as noise, poor calibrations, or even wrong signal polarity. 

4.2.2 Diagnostics 
While the RMS error shown in Figure 4 seemed a bit noisy the BPM error 

in Figure 5 says that both HPD36 and HPD49 have significantly larger RMS in 
their errors.  A plot of their turn-by-turn deviation and that of HPD32 is shown 
in Figure 6.  The histogram of HPD32 deviation shown in Figure 7 is roughly 
Gaussian and centered around zero, as expected for a normal BPM.  This is not 
the case for the other two BPM's.  By removing these two noisy ones from the fit 
the TBT RMS deviation improvement can be seen by comparing Figure 8 with 
Figure 4. 

 
Figure 6. BPM deviation plotted against the turn number. 

The emphasis here is that the error statistics may not uniquely point to the 
problem but will likely help in locating it.  Because of the large number of turns, 
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up to 1024, this error information can have good statistical power.  In general 
there is enough diagnostic information caused by problems like dead BPM sig-
nal, bad calibration, noisy, or even wrong polarity. 

 
Figure 7. Histogram of BPM HPD32 deviation.  The dotted line is  a Gaussian 
curve using the estimated centroid and distribution sigma. 

 
Figure 8. The refitted TBT RMS deviation from the same data as in Figure 4 
but with HPD36 and HPD49 removed from the fitting analysis. 

4.2.3 ΤΒΤ  Δp/p 

The beam energy error ∆P/P is plotted in Figure 9, from the same data set 
used within this write-up.  This type of error can be identified visually by look-
ing at the TBT horizontal position.  As one of the parameters in the fit to the hori-
zontal plane BPM data it is also available numerically and can be used to correct 
beam position and angle due to ∆P/P error.  From the figure the synchrotron os-
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cillation amplitude is almost visible beyond the noise level of the fitted data.  
Since each turn takes about 21 µsec the oscillation is estimated to be about 90 Hz.  
The expected frequency from Main Ring beam at 150 GeV is about 70 Hz. 

 
Figure 9. The ∆P/P plot from fitting horizontal BPM data. 

4.2.4 Lattice verification 

The transfer matrix used in the fitting of BPM data represents the knowl-
edge about the beam line optics.  Error in that knowledge leads to systematic er-
ror in the final result.  The TBT data provides diagnostic abilities on this type of 
error.  The level of sensitivity will depend on the resolution and noise level in the 
BPM data as will be discussed in the section on the simulated data. 

4.3 FITTING THE PHASE SPACE ELLIPSE 
There are five parameters needed to describe an ellipse.  Among them two 

are used to specify the center of ellipse in the x-x' space.  Another is used to 
specify the area of the ellipse, the emittance.  Only two of them would have the 
information on the lattice function α and β.  To try to fit all five parameters 
would be a much more difficult task.  The equations shown in section 2.4 applies 
only when the ellipse is centered at the origin of the phase space.  To approxi-
mate this the center of ellipse is taken to be the average of all data points used 
and is subtracted off before proceeding with the fit.  The validity of this approach 
is near perfect when the number of turns used gets beyond 50.   

The result of fitting ellipse to phase space data points to get the area, α, 
and β, the calculation of the tune, and the estimated error on the fitted values are 
given here.   
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Figure 10. X and X' phase space plot for 50 consecutive turns.  The fitted 
ellipse is shown in solid lines and the fitted values are shown to the right.  The 
design lattice function is shown enclosed within the parenthesis. 

 
Figure 11. The lattice function at the BPM locations as derived from the data 
is shown in solid dots.  The sigma of the distribution of the fitted beta is shown 
as  error bars. The open circles with connecting lines are from the SYNCH 
calculation. 

4.3.1 Lattice function calculation 
In Figure 10 is an example with 50 turns of phase space data at the Main 

Ring EØ straight location.  The fitted ellipse is shown in dotted line.  The fitted 
lattice function and the design lattice function are also displayed.  The same cal-
culation can be done to other BPM locations.  Figure 11 plots the lattice function 
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at each BPM location as calculated from data and as designed.  In (a) is the beta 
function and (b) the alpha function.  The error bars are the estimated RMS of the 
distribution of the fitted lattice function and will be mentioned later. 

 
Figure 12. The normalized phase space plot.  This is Figure 3 plotted in 
normalized phase space using fitted lattice function. 

4.3.2 Tune  
Figure 12 shows the normalized phase space plot of the same data as used 

in Figure 3 using the fitted lattice function α and β shown in Figure 10 and with 
the following transformation to the normalized phase space: 

X = x

Y
N
= ! " x' +# " x

 

The TBT tune as mentioned in equation 2-(9)&(10) is interesting in study the de-
tuning effect due to higher order non-linear field.  The tune information is ex-
tracted as shown in Figure 13.  The solid dots are normalized phase space angles 
calculated with an accumulated offset to make the angle monotonically increas-
ing.  A linear fit to the angles with respect to the turn number gives the tune.  The 
deviation from the linear fit is shown in open diamonds and ranges from -.03 to 
+.03, in unit of 2π.  Typically a tune measurement resolution of about 1 part in a 
thousand is possible with only 20 turns of data.  The FFT method would require 
1024 turns for the same accuracy. 
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Figure 13. TBT tune calculation.  The normalized phase space angles are 
plotted in solid dots  with the vertical scale shown on the left hand side.  The 
phase angle deviations are plotted in open diamonds with the vertical scale 
shown on the right. 

4.3.3 Error estimate 

Because of the way ellipse is fitted an analytical error analysis is quite dif-
ficult with all the substitutions involved.  Fortunately, because it takes only about 
20 turn of TBT data to get a decent sample there is an empirical way of 
estimating the error.  If n number of turns is chosen to do the fitting from a data 
set of N total consecutive turns there will be a set of (N – n + 1) possible sample.  
The variation among all possible sample can be used to estimate the error.   

Usually it is a good idea to fit with enough points to get a better centroid 
averaged.  On the other hand if the systematic effect is significant the number of 
turns used needs to be kept to a minimum.   

4.3.3.1 Statistical 

The BPM data is subjected to error due to noise on the BPM signal and the 
digitization resolution.  This will cause error in the calculated phase space points 
and consequently the fitted lattice function.  This type of errors are un-correlated 
and will be statistical in nature.  Figure 14 shows the histogram of the fitted beta 
function with each sample using 30 turns of data.  The sigma of the histogram 
simply states the extend of variation in the fitted result as was done in Figure 11, 
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which plots the average and distribution sigma at all the BPM locations.  If there 
is no systematic effect the centroid and width of the histogram will be the statisti-
cal resolution.   

 

Figure 14. Histogram of fitted beta function at EØ.  The sample window is set 
at 30 turns. 

4.3.3.2 Systematic  

In reality the systematic effect always clouds the picture.  The systematic 
error is very crucial in this type of lattice function calculation.  Constant attention 
to the goodness of fit at every stage is advised.   

Lattice model used 
If the transfer matrix is from a wrong lattice model the calculation for the 

phase space point can be wrong.  There will still be a phase space distribution 
that looks like an ellipse.  This will result in a slightly different value for the lat-
tice function.  If the error is caused by unsteady magnet current the error will 
change in time as well.  

Bad  TBT data 
Bad data can be a result of many things going wrong.  For example, the 

BPM data could have a wrong sign, a bad calibration, a time dependent drift in 
signals from electronics, or could simply be dead.  Problem of this sort usually 
leads to poor beam parameter fitting statistics.   The data can also be corrupted 
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such that the BPM data used to fit for beam parameter does not all come from the 
same turn number.   

 
Figure 15. The fitted beta plotted against the turn number. 

Data stability 
Typically using more turns to fit for lattice function should in principle 

give an averaging effect.  However, systematic effects caused by the electronics, 
the x-y plane coupling, or the orbit drift due to magnet current can distort the 
phase space population asymmetrically and cause bias to the fitted lattice func-
tion.   

Figure 15 takes the same result used in Figure 14 and plots them with re-
spect to the turn number.  The fitted beta function appears to be changing in 
time.  There could be more than one possible cause and it needs to be examined 
carefully. 
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5. Simulation 
The purpose of doing simulated data is to evaluate the systematic effects 

caused by an error condition, to identify the signature of an error condition, and 
to answer the question of whether a fit is good enough for the given data accu-
racy.  Typically there are three major issues that the simulation can explore.  The 
first is the noise problem which includes the ADC resolution.  The second is the 
accuracy of transfer matrix being used to analyze data.  The third is about the 
coupling.  The study of the effect of coupling has on the lattice function mea-
surement is not finished and will not be covered in this write-up. 

In addition to generating ideal data the simulation also packages data into 
exactly the same data buffer format as in the actual data.  The simulated data 
then gets processed through exactly the same way as the real data to reduce pos-
sible differential treatment of different type of data. 

 
Figure 16. BPM position deviation using simulated data.  All the data shown 
have the effect of a 8-bit ADC included except for the ideal data.   

5.1 NOISE AND DATA RESOLUTION 
The BPM hardware gives the position in an 8-bit data covering both polar-

ity.  The data is then re-scaled using a pre-calculated lookup table.  To simulate 
the effect of digitization the routine calculates the expected beam positions and 
references the lookup table to produce an 8-bit data.  The noise level can be set to 
zero, to a certain level, or to that derived from fitting the actual data.  This way 
one can estimate how much of the fitted lattice function is affected by the noise.  
Figure 16 shows TBT RMS deviation from the fit to simulated BPM position data 
at varying data accuracy.  The ideal data, which has infinite ADC resolution and 
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no noise, has essentially zero RMS deviation.  For Fermilab Main Ring, the posi-
tion resolution due to the 8-bit ADC is about .3 mm horizontally and .12 mm ver-
tically.  The effect of the ADC resolution is reflected in the data set marked 
"ADC@8-bit".  All others have both the ADC resolution and noise effect.  As a 
comparison the real data shown in Figure 4 has a averaged TBT RMS of around 
.25 mm. 

 
Figure 17. The BPM position deviation with simulation error.  Same as in the 
Figure 16 but the transfer matrix used to generate data is slightly different from 
the one used for analysis.  The strength of the horizontal focusing quad bus 
current, QF, was set to be .4% higher while generating the simulation data. 

5.2 TRANSFER MATRIX 
The simulation program uses a separate set of transfer matrix, which may 

or may not be the same as the one used by the analysis program, to generate 
Monte Carlo data. It is possible to study the errors caused by using incorrect 
transfer matrix.   

Figure 17 shows the effect of transfer matrix error and is to be compared 
with Figure 16.   The only appreciable difference between the two figures is in 
the data set called "Ideal data".  The horizontal RMS is much larger because the 
error is on the focusing quads where vertical beta function is small.  This effect, 
however, is not quite visible after the ADC resolution is included in the 
simulation.  This demonstrated the level of sensitivity the current BPM system 
have on the transfer matrix error, based on the BPM positions along. 
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Figure 18, FFT spectrum from the simulated data. 

As was mentioned earlier there is a lot of statistical power in the TBT data.  
In Figure 18(a) is a FFT spectrum of BPM position which shows the fractional 
tune of the horizontal betatron oscillation.  Figure 18(b) shows the FFT spectrum 
of BPM position deviation from the fit.  As was expected, there is no visible beta-
tron frequency in the spectrum.  Figure 18(c) is a similar display as in 18(b) ex-
cept that the transfer matrix used to generate the data has a focusing quad bus 
current error of +.4%.  There is definitely a hint of betatron frequency in the spec-
trum.  Turn our attention to the FFT spectrum from the real data used in this 
write-up and shown in Figure 19.  In (a) is the BPM position FFT spectrum and 
(b) the BPM position deviation FFT spectrum.  Again there is visible betatron fre-
quency.  The higher background level could be attributed to the fact that the be-
tatron oscillation was induced at around the 90-th turn in the real data.  The 
transfer matrix error is likely not the only one that could contribute to this effect.  



   TM-1922 

 - 24 - 

But if indeed such error exist the BPM system would be sensitive to the level of 
.4% in bus current. 

 
Figure 19. The FFT spectrum from actual data set used within this write-up. 

5.3 LATTICE FUNCTION ERROR 
The algorithm used to fit the ellipse at present does only straight fitting 

and is likely to have bias depending on the data set.  By using simulation data 
many of the biases can be evaluated and in some cases eliminated.  Figure 20 and  

 
Figure 20. The deviation RMS of fitted beta value from the beta used due to 
ADC resolution and noise. 

21 show one example where the simulation is used to evaluate the effect of noise 
and ADC resolution on the fitted lattice function beta and the distribution RMS.  
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There appears to be substantial bias on the beta function as the noise level in-
creases.  The earlier assessment puts the BPM data noise level some where be-
tween .2 and .3 mm  and consequently a possible bias of about 3 meters in beta 
function.  Similar data can be obtained for the alpha function but is not shown in 
this write-up.   

 
Figure 21. The RMS of fitted beta value distribution due to ADC resolution and 
noise.   
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6. Conclusion 
Knowing the lattice function is important for matching lattice functions 

between two different machines during beam transfer and for understanding of 
the machine as well.   The technique introduced in this write-up gives both the β 
and α value needed for a complete matching.  Since the phase space area of the 
ellipse is a fitted parameter it is not sensitive to how the betatron oscillation is in-
troduced.  In the near future the BPM system will be upgrade to provide data on 
every BPM available.  The potential for measuring the lattice function around the 
whole ring is very real.  With future improvement to the analysis software to re-
duce the systematic effect the TBT BPM data could very well be the ideal instru-
ment to machine lattice measurement. 

This write-up is intended to give a clear picture of what is being done to 
extract the lattice function from data available in the Fermilab BPM system.  The 
procedure is very quick once the machine is setup to take data.  The data it pro-
duces is reproducible but is also very susceptible to systematic effect.  The valid-
ity of the result can only be ensured if one takes great care to maintain the in-
tegrity of data, to use the correct transfer matrix, and to pay attention to the di-
agnostic information.  
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